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Abstract In this paper, a (weak) vector equilibrium principle for vector network
problems with capacity constraints and elastic demands is introduced. A sufficient
condition for a (weak) vector equilibrium flow to be a solution for a system of (weak)
vector quasi-variational inequalities is obtained. By virtue of Gerstewitz’s nonconvex
separation functional ξ , a (weak) ξ -equilibrium flow is introduced. Relations between
a weak vector equilibrium flow and a (weak) ξ -equilibrium flow is investigated. Rela-
tions between weak vector equilibrium flows and two classes of variational inequalities
are also studied.

Keywords Vector traffic network equilibrium model · (weak) Vector
equilibrium · (weak) ξ -equilibrium · Variational inequalities

1 Introduction

The earliest network equilibrium model was proposed by Wardrop for a transporta-
tion network. Since then, many other equilibrium models have been proposed in the
economics literature (see [4,8,13]). In [5,6], Daniele et al. investigated a traffic equi-
librium problem with capacity constraints in dynamic case and obtained sufficient and
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necessary conditions for an equilibrium flow. In [14,15], Nagurney and Dong discussed
a multiclass, multicriteria traffic equilibrium problem without capacity constraints and
got equivalent relations between equilibrium flows and variational inequalities. But
the criteria adopted in their studies were only the weighted sum of all criteria. As
such, it is still a single cost function.

Recently, equilibrium models based multicriteria consideration or vector-valued
cost functions have been proposed (see [1,2,9,10,16]). In [1], Chen and Yen first
introduced a vector equilibrium principle for a vector traffic network without capac-
ity constraints, which is a generalization of the classical Wardrop’s user-optimizing
principle. In [16], Yang and Goh investigated equivalent relations among a (weak)
vector equilibrium principle, a class of (weak) vector variational inequalities and a
class of vector optimization problems for a vector traffic network without capacity
constraints. In [2], Chen et al. introduced an ξea-functional and an ξea-equilibrium
principle for a vector traffic network without capacity constraints. They proved an
equivalent relation between a weak vector equilibrium flow and an ξea-equilibrium
flow and obtained a sufficient and necessary condition for a weak vector equilibrium
flow to be a solution of a class of variational inequalities. In [11], Li et al. introduced
a generalized vector equilibrium principle for a vector traffic network with capac-
ity constraints and obtained a necessary and sufficient condition for the generalized
vector flow to be a minimum vector cost flow.

When the cost function is a scalar function, it is known that finding an equilibrium
flow is equivalent to solving a class of variational inequalities. However, when the
cost function is vector-valued, finding a weak vector equilibrium flow is, in general,
not necessarily equivalent to solving a weak vector variational inequality problem.
Naturally, we hope to obtain a sufficient and necessary condition for a weak vector
equilibrium flow. An ξea-equilibrium principle for the vector network equilibrium
problem with capacity constraints and elastic demands can be introduced as in [2]
(see Definition 3.2). Unfortunately, we can only establish that an ξea-equilibrium flow
is a weak vector equilibrium one, but not vice versa. Therefore, in this paper, we also
introduce a weak ξ -equilibrium principle, which is weaker than the ξea-equilibrium
principle introduced in [2] in the sense that the element a in ξea-equilibrium is not
fixed. As such, we are able to obtain a sufficient and necessary condition for a weak
vector equilibrium flow to be a weak ξ -equilibrium flow. Furthermore, we introduce
a class of variational inequalities by virtue of ξ -functional and establish an equivalent
relation between a weak vector equilibrium flow and a solution of a scalar variational
inequality problem.

The outline of the paper is as follows. In Sect. 2, a (weak) vector equilibrium prin-
ciple is introduced. Then, sufficient conditions for a (weak) vector equilibrium flow
to be a solution for the system of (weak) quasi-variational inequalities are obtained.
In Sect. 3, the (weak) ξ -equilibrium principle is introduced. Relations between weak
vector equilibrium flows and (weak) ξ -equilibrium flows are investigated. In Sect. 4,
equivalent relations between (respectively, weak) ξ -equilibrium flows and (respec-
tively, another) classes of variational inequalities are also discussed.

2 Vector equilibrium principle with capacity and elastic demand

Consider a supply-demand network G = [N , L], where N denotes the set of nodes
in the network and L is the set of directed arcs. Let a denote an arc of the network
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connecting a pair of nodes, and p denote a path, assumed to be acyclic, consisting of
a sequence of arcs connecting an origin/destination (O/D) pair of nodes. The set of
O/D pairs is denoted by W and the set of available paths joining the O/D pair w is
denoted by Pw. Let

n = |L|, P =
⋃

w∈W

Pw and m = |P|.

Assume that there are q classes of products to traverse in the network with a typical
product class denoted by j. Let gj

a and f j
p denote the flows of product j on arc a and on

path p, respectively. Group the flows on all arcs for product j into the n-dimensional

column vector gj with components:
{

gj
a, . . . , gj

n

}
∈ Rn, which is called as an arc flow

of product j on the network, and group the flows on all paths for product j into the

m-dimensional column vector f j with components:
{

f j
p, . . . , f j

m

}
∈ Rm, which is called

as a path flow of product j on the network. The relationship between the arc flows and
the path flows for product j is

gj
a =

∑

p∈P

δapf j
p,

where δap = 1, if arc a is contained in path p, and 0, otherwise. Let

g = ((g1)T, . . . , (gq)T)T ∈ Rqn and f =
(
(f 1)T, . . . , (f q)T

)T ∈ Rqm,

where the superscript T denotes transpose. f is called as a flow on the network.
Let cj

a(g): Rn → Rl be a vector-valued cost function for arc a and product j and
cj

p(f ) : Rm → Rl be a vector-valued cost function for path p and product j, where

cj
p(f ) =

∑

a∈L
δapcj

a(g).

Similarly, group vector cost functions on all paths for product j into an l × m matrix-

valued function cj(f ) with column components:
{

cj
p(f ), . . . , cj

m(f )
}

∈ Sl×m and let

c(f ) = (c1(f ), . . . , cq(f )) ∈ Sl×mq, (1)

where Sl×r denotes the set of real l × r matrices.
Suppose that the demand of network flow is not fixed for each O/D pair w and

product j. In general, it depends on the costs for all O/D pair. Thus, by (1), we assume
directly that the demand is a function of a flow f (see [12]). We say that a flow h
satisfies demands for the flow f if

∑

p∈Pw

hj
p = dj

w(f ), ∀w and j, (2)

where dj
w(f ) ∈ R+ is a given demand for O/D pair w, product j and the flow f , that is,

the travel demand of product j for an O/D pair and the flow f is equal to the sum of
the flows of product j on paths connecting the O/D pair. Note that f is a given flow. It
may not satisfy demands for oneself, i.e., there may be j0 and w0 such that

∑

p∈Pw0

f j0
p �= dj0

w0(f ).
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Let λ
j
p and µ

j
p be lower and upper capacity constraints of path p for product j, respec-

tively, namely,

λ
j
p ≤ f j

p ≤ µ
j
p.

We group lower and upper capacity constraints of all paths for product j into two m-
dimensional column vectors λj and µj with components: {λj

p, . . . , λj
m} and {µj

p, . . . , µj
m}

∈ Rm, respectively. Let

λ = ((λ1)T, . . . , (λq)T)T and µ = ((µ1)T, . . . , (µq)T)T.

For the l-dimensional Euclidean space Rl, we denote the orderings induced by Rl+ as
follows:

x � y iff y − x ∈ Rl+,

x ≺ y iff y − x ∈ intRl+,

where intRl+ is the interior of Rl+.
A flow h satisfying the demand requirements (2) and capacity constraints is called

a feasible flow for the flow f , namely,

λ � h � µ

and for every w ∈ W and product j,
∑

p∈Pw

hj
p = dj

w(f ).

The set of feasible flows is given by

K(f ) =



h | λ � h � µ, and
∑

p∈Pw

hj
p = dj

w(f ), for every w ∈ W, j = 1, . . . , q






and it is called the feasible set for the flow f . K(f ) is clearly a closed convex set for
every fixed f . Now we introduce two vector equilibrium principles for the vector traffic
network equilibrium model with capacity constraints and elastic demands.

Definition 2.1 (Vector equilibrium principle) A flow f ∈ K(f ) is said to be in vector
equilibrium if for any O/D pair w, we have

∀p, p′ ∈Pw, cj
p′(f )−cj

p(f )∈Rl+\{0}	⇒ f j
p =µ

j
p or f j

p′ =λ
j
p′ , j=1, . . . , q. (3)

Definition 2.2 (Weak vector equilibrium principle) A flow f ∈ K(f ) is said to be in
weak vector equilibrium if for any O/D pair w, we have

∀p, p′ ∈Pw, cj
p′(f )−cj

p(f )∈ intRl+ 	⇒ f j
p =µ

j
p or f j

p′ =λ
j
p′ , j=1, . . . , q. (4)

Remark 2.1 If q = 1, the demand is fixed and the cost function is a scalar function,
the vector equilibrium flows in Definitions 2.1 and 2.2 reduce assumption condition
(3) in [5], which is equivalent to an equilibrium flow defined in [5]. Thus, Definitions
2.1 and 2.2 are generalizations of equilibrium flows defined in [5].
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To investigate sufficient conditions for a flow to be in weak vector equilibrium, we
introduce the following systems of vector quasi-variational inequalities:

( SVQVI)
{

Find f ∈ K(f ) such that for j = 1, . . . , q, f j ∈ Kj(f ) and
〈cj(f ), hj − f j〉 �∈ −Rl\{0}, for all hj ∈ Kj(f ),

where

Kj(f ) =



hj | λj � hj � µj, and
∑

p∈Pw

hj
p = dj

w(f ), for every w ∈ W






and systems of weak vector quasi-variational inequalities:

( SVQVI)w

{
Find f ∈ K(f ) such that for j = 1, . . . , q, f j ∈ Kj(f ) and
〈cj(f ), hj − f j〉 �∈ − intRl+ for all hj ∈ Kj(f ).

Theorem 2.1 If a flow f ∈ K(f ) solves the problem (SVQVI), then the flow f is a vector
equilibrium flow.

Proof Suppose that f is not a vector equilibrium flow. Then, there exist 1 ≤ j ≤ q, w ∈
W and t, s ∈ Pw such that

cj
s(f ) − cj

t(f ) ∈ Rl+\{0}, f j
t < µ

j
t and f j

s > λ
j
s. (5)

Construct a flow h as follows:

hi
r =






f i
r , i �= j,

f j
r , r �= t, s and i = j,

f j
t + ε, r = t and i = j,

f j
s − ε, r = s and i = j,

where

0 < ε ≤ min
{
µ

j
t − f j

t , f j
s − λ

j
s

}
.

Then, we have

h ∈ K(f ).

It follows readily that
∑

p∈P

〈
cj

p(f ), hj
p − f j

p

〉
=

〈
cj

t(f ), f j
t + ε

〉
−

〈
cj

t( f ), f j
t

〉
+

〈
cj

s(f ), fs − ε
〉
−

〈
cj

s(f ), fs

〉

=
〈
cj

t( f ), ε
〉
−

〈
cj

s(f ), ε
〉

=
〈
cj

t( f ) − cj
s(f ), ε

〉
∈ −Rl+\{0},

which contradicts the assumption condition that the flow f solves the problem
(SVQVI). �

Following the proof of Theorem 2.1, we can establish a similar sufficient condition
for a weak vector equilibrium flow.

Theorem 2.2 If a flow f ∈ K(f ) solves (SVQVI)w, then the flow f is a weak vector
equilibrium flow.
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3 ξ -equilibrium principles

It follows from Theorems 2.1 and 2.2 that the solutions of the problem (SVQVI)
(respectively, (SVQVI)w) must be vector equilibrium flows (respectively, weak vector
equilibrium flows). However, the converse relation does not necessarily hold. In this
section, we shall use Gerstewitz’s nonconvex separation functional to introduce a
(weak) ξ -equilibrium flow. We also discuss the equivalent relation between weak vec-
tor equilibrium flows and (weak) ξ -equilibrium flows. Now we present a nonconvex
separation functional and a weakly efficient point.

Given a fixed e ∈ intRl and α ∈ Rl, the Gerstewitz’s nonconvex separation func-
tional ξea : Rl → R is defined by:

ξeα(y) = min{λ ∈ R : y ∈ α + λe − Rl+}, ∀y ∈ Rl.

It follows from the proof process of Theorem 2.1 in [7] that ξeα is continuous on Rl

and strictly monotone on intRl+ for any fixed α ∈ Rl.
Let A be a nonempty subset in Rl. A point y ∈ A is said to be a weakly efficient

point of A if

A
⋂

(y − intRl+) = ∅.

By w − Eff(A) we denote the set of all weakly efficient points of A.
From Corollary 3.1 and Remark 3.1 in [7], one has the following result.

Lemma 3.1 Let e ∈ intRl+. Then, y0 ∈ w − Eff(A) if and only if y0 ∈ A and the
functional, given by

ξey0(y) = min{η ∈ R | y ∈ y0 + ηe − Rl+},
satisfies the following conditions:

ξey0

(
y0

)
= 0, ξey0(A) ≥ 0 and ξey0

(
y0 − intRl+

)
< 0,

where ξey0(F) ≥ 0 denotes ξey0(y) ≥ 0, ∀y ∈ F.

We introduce now two kinds of ξea-equilibrium flows. Using the two concepts we
can get some sufficient and necessary conditions of weak vector equilibrium flows.

Definition 3.1 Let e ∈ intRl+. A flow f ∈ K(f ) is said to be in weak ξ -equilibrium if
for any O/D pair w, we have

∀p, p′ ∈ Pw, ξ
ecj

p′ (f )
(cj

p(f )) < 0 	⇒ f j
p = µ

j
p or f j

p′ = λ
j
p′ , j = 1, . . . , q. (6)

Definition 3.2 Let e ∈ intRl+. A flow f ∈ K(f ) is said to be in ξ -equilibrium if there
exists an α ∈ Rl such that, for any O/D pair w, we have

∀p, p′ ∈ Pw, ξeα(cj
p(f )) < ξeα(cj

p′(f )) 	⇒ f j
p = µ

j
p or f j

p′ = λ
j
p′ , j = 1, . . . , q. (7)

Remark 3.1 In [3], Cheng and Wu discussed a multiclass, multicriteria supply-demand
network equilibrium model without capacity constraints and obtained a necessary and
sufficient condition of the weak vector equilibrium principle. However, for a multi-
class, vector supply-demand network equilibrium model with capacity constraints, if
we introduce ξea-equilibrium principle similar to the idea of [3] or Definition 3.2,
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we can only obtain a sufficient condition. Thus, it is necessary to introduce a weak
ξ -equilibrium principle in order to obtain a sufficient and necessary condition.

Theorem 3.1 A flow f ∈ K(f ) is in weak vector equilibrium if and only if f ∈ K(f ) is
in weak ξ -equilibrium.

Proof Assume that f ∈ K(f ) is in weak ξ -equilibrium, i.e., (6) holds, but f is not in
weak vector equilibrium. Then, there exist an O/D pair w, paths p, p′ ∈ Pw and a
product j such that

cj
p′(f ) − cj

p(f ) ∈ intRl+,

f j
p < µ

j
p and f j

p′ > λ
j
p′ . (8)

It follows from the strict intRl+-monotonicity of ξeα functional for any α ∈ Rl that

ξ
ecj

p′ (f )
(cj

p(f )) < ξ
ecj

p′ (f )
(cj

p′(f )) = 0.

By (6), one has f j
p = µ

j
p or f j

p′ = λ
j
p′ , which contradicts (8).

Conversely, assume that f ∈ K(f ) is in weak vector equilibrium, but f is not in weak
ξ -equilibrium. Then, there exist an O/D pair w, paths p, p′ ∈ Pw and a product j such
that

ξ
ecj

p′ (f )
(cj

p(f )) < 0, (9)

f j
p < µ

j
p and f j

p′ > λ
j
p′ . (10)

If cj
p(f ) ≺ cj

p′(f ), i.e., cj
p′(f ) − cj

p(f ) ∈ intRl+, it follows from the weak vector equilib-
rium property of the flow f that

f j
p = µ

j
p or f j

p′ = λ
j
p′ ,

which contradicts (10).
If cj

p′(f ) − cj
p(f ) �∈ intRl+, then

cj
p(f ) − cj

p′(f ) �∈ − intRl+.

Set

A =
{

cj
s(f ) | cj

s(f ) �∈ cj
p′(f ) − intRl+, s ∈ Pw

}
.

Then, we have

cj
p′(f ), cj

p(f ) ∈ A and cj
p′(f ) ∈ w − Eff(A).

From Lemma 3.1, one has

ξ
ecj

p′ (f )

(
cj

p(f )
)

≥ 0,

which contradicts (9). Thus, f is a weak ξ -equilibrium flow and the proof is
complete. �
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Fig. 1 Network topology for an example

Theorem 3.2 If f ∈ K(f ) is in ξ -equilibrium, then the flow f is in weak vector equilib-
rium.

Proof Suppose that for the O/D pair w, paths p, p′ ∈ Pw and the product j, we have

cj
p′(f ) − cj

p(f ) ∈ intRl+.

It follows from the strict intRl+-monotonicity property of the ξeα functional that

ξeα(cj
p(f )) < ξeα(cj

p′(f )).

From Definition 3.2, one has

f j
p = µ

j
p or f j

p′ = λ
j
p′ .

Thus, the flow f ∈ K(f ) is in weak vector equilibrium. �
By Theorems 3.1 and 3.2, we get the following corollary.

Corollary 3.1 If a flow f ∈ K(f ) is in ξ -equilibrium, then the flow f is in weak ξ -equi-
librium.

Note that when f ∈ K(f ) is in weak ξ -equilibrium, f may not be in ξ -equilibrium. The
following example explains this situation.

Example 3.1 Consider the network problem depicted in Fig. 1, which consists two
nodes x and y, three arcs a, b and d and a single O/D pair w = (x, y).

Assume that there is only one product to traverse in the network and upper capaci-
ties of the three paths {p1, p2, p3} are 4, 3 and 3, respectively, and their lower capacities
are all zero. The travel demand for w is fixed and dw = 6. The arc cost functions from
R3 to R2 are, respectively,

ca(g) =
(

6ga
3ga

)
, cb(g) =

(
5gb
4gb

)
and cd(g) =

(
7gd
gd

)
,

and the path cost functions from R3 to R2 are, respectively

cp1(f ) =
(

6fp1

3fp1

)
, cp2(f ) =

(
5fp2

4fp2

)
and cp3(f ) =

(
7fp3

fp3

)
.

We have

λ =



0
0
0



 , µ =



4
3
3



 , W = {w = (x, y)}, Pw = P = {p1, p2, p3}.

Take

f ∗
p1

= 2, f ∗
p2

= 2 and f ∗
p3

= 2.
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We have

cp1(f
∗) =

(
12
6

)
, cp2(f

∗) =
(

10
8

)
and cp3(f

∗) =
(

14
2

)
.

Take e = (1, 1)T ∈ intR2+ and α = (α1, α2)
T ∈ R2. It follows from Chen et al [2] that

the ξeα-functional may be denoted as

ξeα(y) = max{y1 − α1, y2 − α2}.
Then,

ξecp1 (f ∗)(cp2(f
∗)) = max{10 − 12, 8 − 6} = 2,

ξecp1 (f ∗)(cp3(f
∗)) = max{14 − 12, 2 − 6} = 2,

ξecp2 (f ∗)(cp1(f
∗)) = max{12 − 10, 6 − 8} = 2,

ξecp2 (f ∗)(cp3(f
∗)) = max{14 − 10, 2 − 8} = 4,

ξecp3 (f ∗)(cp1(f
∗)) = max{12 − 14, 6 − 2} = 4,

ξecp3 (f ∗)(cp2(f
∗)) = max{10 − 14, 8 − 2} = 6.

Thus, f ∗ is a weak ξ -equilibrium flow. On the other hand, for any α ∈ R2, we have

ξeα(cp1(f
∗)) = max{12 − α1, 6 − α2},

ξeα(cp2(f
∗)) = max{10 − α1, 8 − α2},

ξeα(cp3(f
∗)) = max{14 − α1, 2 − α2}.

If ξeα(cp1(f
∗)) = 6 − α2, then

ξeα(cp1(f
∗)) < ξeα(cp2(f

∗)). (11)

We have

f ∗
p1

= 2 < µp1 = 4 and f ∗
p2

= 2 > λp2 = 0. (12)

If ξeα(cp1(f
∗)) = 12 − α1, then

ξeα(cp1(f
∗)) < ξeα(cp3(f

∗)). (13)

We have

f ∗
p1

= 2 < µp1 = 4 and f ∗
p3

= 2 > λp3 = 0. (14)

Thus, it follows from (11)–(14) that f ∗ is not in ξ -equilibrium.

4 Equivalent relationships

In this section, we shall discuss the equivalent relation of weak vector equilibrium
flows, i.e., weak ξ -equilibrium flows, and solutions for a class of variational inequal-
ities. We shall also investigate the equivalent relation of ξ -equilibrium flows and
another class of variational inequalities.
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Theorem 4.1 Let e ∈ intRl+. A flow f ∈ K(f ) is in weak vector equilibrium if and only
if f ∈ K(f ) solves the following variational inequality:

q∑

j=1

∑

w∈W

∑

p∈Pw

〈
min
v∈Aj

w

ξ
ecj

v(f )
(cj

p(f )), hj
p − f j

p

〉
≥ 0, ∀h ∈ K(f ), (15)

where

Aj
w :=

{
v ∈ Pw | f j

v > λ
j
v

}
.

Proof Assume that f ∈ K(f ) is not a weak vector equilibrium flow. Then, there exist
1 ≤ j ≤ q, w ∈ W and t, s ∈ Pw such that

cj
s(f ) − cj

t(f ) ∈ intRl+, f j
t < µ

j
t and f j

s > λ
j
s. (16)

Construct a flow h as follows:

hi
r =






f i
r , i �= j,

f j
r , r �= t, s and i = j,

f j
t + ε, r = t and i = j,

f j
s − ε, r = s and i = j.

where

0 < ε ≤ min{µj
t − f j

t , f j
s − λ

j
s}.

Then, h ∈ K(f ). It follows readily that

q∑

j=1

∑

w∈W

∑

p∈Pw

〈
min
v∈Aj

w

ξ
ecj

v(f )
(cj

p(f )), hj
p − f j

p

〉

=
〈

min
v∈Aj

w

ξ
ecj

v(f )
(cj

t(f )), ε

〉
−

〈
min
v∈Aj

w

ξ
ecj

v(f )
(cj

s(f )), ε

〉

=
〈

min
v∈Aj

w

ξ
ecj

v(f )
(cj

t(f )) − min
v∈Aj

w

ξ
ecj

v(f )
(cj

s(f )), ε

〉
.

Since the ξeα-functional is strict intRl+-monotone and A is a finite set, it follows from
(16) that

min
v∈Aj

w

ξ
ecj

v(f )

(
cj

t(f )
)

− min
v∈Aj

w

ξ
ecj

v(f )
(cj

s(f )) < 0.

Thus, we have

q∑

j=1

∑

w∈W

∑

p∈Pw

〈
min
v∈Aj

w

ξ
ecj

c(f )
(cj

p(f )), hj
p − f j

p

〉
< 0,

which contradicts (15). Thus, f is a weak vector equilibrium flow.
Conversely, for any product j and w ∈ W, set

Bj
w :=

{
u ∈ Pw | f j

u < µ
j
u

}
.
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Since f is in weak vector equilibrium,

cj
u(f ) − cj

v(f ) �∈ −intRl+ for all u ∈ Bj
w, v ∈ Aj

w.

It follows from the proof process of Theorem 3.1 that

ξ
ecj

v(f )
(cj

u(f )) ≥ 0 for all u ∈ Bj
w, v ∈ Aj

w.

So, there exists a γ
j
w ≥ 0 such that

min
u∈Bj

w

min
v∈Aj

w

ξ
ecj

v(f )
(cj

u(f )) = γ
j
w.

Let h ∈ K(f ) be arbitrary. Then, for every r ∈ Pw, and 1 ≤ j ≤ q, we consider three
cases:

Case 1 If min
v∈Aj

w
ξ

ecj
v(f )

(cj
r(f )) < γ

j
w, then r �∈ Bj

w. Hence, f j
r = µ

j
r, hj

r − f j
r ≤ 0 and

(
min
v∈Aj

w

ξ
ecj

v(f )
(cj

r(f )

)
− γ

j
w)(hj

r − f j
r) ≥ 0. (17)

Case 2 min
v∈Aj

w
ξ

ecj
v(f )

(cj
r(f )) > γ

j
w, then we have

min
v∈Aj

w

ξ
ecj

v(f )
(cj

r(f )) > 0. (18)

Since min
v∈Aj

w
ξ

ecj
v(f )

(cj
p(f )) ≤ 0, ∀p ∈ Aj

w, it follows from (18) that r �∈ Aj
w. Hence,

f j
r = λ

j
r, hj

r − f j
r ≥ 0 and

(
min
v∈Aj

w

ξ
ecj

v(f )
(cj

r(f )

)
− γ

j
w)(hj

r − f j
r) ≥ 0. (19)

Case 3 If min
v∈Aj

w
ξ

ecj
v(f )

(cj
r(f )) = γ

j
w, then we have

(
min
v∈Aj

w

ξ
ecj

v(f )
(cj

r(f )

)
− γ

j
w)(hj

r − f j
r) = 0. (20)

From (17), (19) and (20),

q∑

j=1

∑

w∈W

∑

p∈Pw

〈
min
v∈Aj

w

ξ
ecj

v(f )
(cj

p(f )), hj
p − f j

p

〉
≥

q∑

j=1

∑

w∈W

γ
j
w(dj

w − dj
w) = 0.

Thus, the formula (15) holds. �
From Theorems 3.1 and 4.1, the following corollary holds.

Corollary 4.1 Let e ∈ intRl+. A flow f ∈ K(f ) is a weak ξ -equilibrium flow if and only
if f ∈ K(f ) solves the following variational inequality:

q∑

j=1

∑

w∈W

∑

p∈Pw

〈
min
v∈Aj

w

ξ
ecj

v(f )
(cj

p(f )), hj
p − f j

p

〉
≥ 0, ∀h ∈ K(f ),
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Theorem 4.2 Let e ∈ intRl+. A flow f ∈ K(f ) is in ξ -equilibrium if and only if there is
an a ∈ Rl such that the flow f ∈ K(f ) solves the following variational inequality:

q∑

j=1

∑

w∈W

∑

p∈Pw

〈
ξea(c

j
p(f )), hj

p − f j
p

〉
≥ 0, ∀h ∈ K(f ). (21)

Proof Similar to the proof of Theorem 4.1, suppose that f is not a ξ -equilibrium flow.
Then, for any a ∈ Rl, there exist 1 ≤ j ≤ q, w ∈ W and t, s ∈ Pw such that

ξea(c
j
t(f )) < ξea(c

j
s(f )), f j

t < µ
j
t and f j

s > λ
j
s.

Construct a flow h as follows:

hi
r =






f i
r , i �= j,

f j
r , r �= t, s and i = j,

f j
t + ε, r = t and i = j,

f j
s − ε, r = s and i = j,

where

0 < ε ≤ min{µj
t − f j

t , f j
s − λ

j
s}.

Then, h ∈ K(f ) and

q∑

j=1

∑

w∈W

∑

p∈Pw

〈
ξea(c

j
p(f )), hj

p − f j
p

〉
=

〈
ξea(c

j
t(f )) − ξea(c

j
s(f )), ε

〉
< 0,

which contradicts (21). Thus, f ∈ K(f ) is a ξ -equilibrium flow.
Conversely, for any product j and w ∈ W, set

Aj
w :=

{
v ∈ Pw | f j

v > λ
j
v

}
and Bj

w :=
{

u ∈ Pw | f j
u < µ

j
u

}
.

It follows from the definition of the ξ -equilibrium flow that

ξea

(
cj

u(f )
)

≥ ξea

(
cj

v(f )
)

, ∀u ∈ Bj
w, v ∈ Aj

w.

So, there exists a γ
j
w ∈ R such that

min
u∈Bj

w

ξea(c
j
u(f ) ≥ γ

j
w ≥ max

v∈Aj
w

ξea(c
j
v(f )).

Similar to the proof process of Theorem 3.2, let h ∈ K(f ). Then, for every r ∈ Pw, 1 ≤
j ≤ q and ξea(c

j
w(f )) < γ

j
w or ξea(c

j
w(f )) > γ

j
w, we always have

(ξea(c
j
w(f ) − γ

j
w)(hj

r − f j
r) ≥ 0.

Thus, the formula (21) holds and the proof is complete. �
Consequently, from Theorems 3.2 and 4.2, we have the following result.
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Corollary 4.2 Let e ∈ intRl+. If there is a ∈ Rl such that a flow f ∈ K(f ) is a solution of
the following variational inequality:

q∑

j=1

∑

w∈W

∑

p∈Pw

〈
ξea(c

j
p(f )), hj

p − f j
p

〉
≥ 0, ∀h ∈ K(f ),

then the flow f is in weak vector equilibrium.

5 Conclusions

In this paper, we assumed that there are lower and upper capacity constraints for all
paths and products. We introduced a (weak) vector equilibrium principle and obtained
a sufficient condition for a (weak) vector equilibrium flow to be a solution for the sys-
tem of (weak) vector quasi-variational inequalities. Since the necessary condition for
a (weak) vector equilibrium flow to be a solution for the system of (weak) vector
quasi-variational inequalities may not hold, we introduced a (weak) ξ -equilibrium
flow by using Gerstewitz’s nonconvex separation functional ξ . We proved a sufficient
and necessary condition that a weak vector equilibrium flow is a weak ξ -equilibrium
flow. We also established an equivalent relation between a weak vector equilibrium
flow and a solution of a scalar variational inequality problem.
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